A Center Manifold Result for Delayed Neural Fields Equations

نویسندگان

  • Romain Veltz
  • Olivier D. Faugeras
چکیده

We develop a framework for the study of delayed neural fields equations and prove a center manifold theorem for these equations. Specific properties of delayed neural fields equations make it impossible to apply existing methods from the literature concerning center manifold results for functional differential equations. Our approach for the proof of the center manifold theorem uses the original combination of results from Vanderbauwhede etal. together with a theory of linear functional differential equations in a history space larger than the commonly used set of time-continuous functions. Key-words: Neural fields equations, space-dependent delays, bifurcation theory, center manifold, functional differential equations. This research was partially supported by the European Union Seventh Framework Programme (FP7/20072013) under grant agreement no. 269921 (BrainScaleS) and by the ERC advanced grant NerVi no. 227747. ∗ IMAGINE/LIGM, Université Paris Est and NeuroMathComp team. † Corresponding author, NeuroMathComp team, INRIA, CNRS, ENS Paris, [email protected] ha l-0 07 19 79 4, v er si on 2 23 J an 2 01 3 Un théorème de variété centrale pour les équations de masses neurales avec délais. Résumé : Dans ce document, nous developpons un cadre théorique pour les équations de masses neurales avec délais et nous prouvons un théorème de variété centrale pour ces équations. Des propriétés spécifiques des équations de masses neurales avec délais rendent difficiles l’application de méthodes existantes issues de la littérature au sujet des variétés centrales pour les équations différentielles fonctionnelles. Nous utilisons, pour la preuve d’un théorème de variété centrale, les résultats de Vanderbauwhede etal. ainsi qu’une théorie des équations différentielles dans un espace des phases plus large que celui des fonctions continues en temps qui est généralement utilisé. Mots-clés : Equations des masses neurales, délais dépendant de l’espace, théorie des bifurcations, variété centrale, équations différentielles fonctionnelles. ha l-0 07 19 79 4, v er si on 2 23 J an 2 01 3 A center manifold result for delayed neural fields equations 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Hopf bifurcation in a container crane model with delayed position feedback

Keywords: Neutral delayed differential equation Double Hopf bifurcation Normal form Multiple time scales Center manifold reduction a b s t r a c t In this paper, we study dynamics in a container crane model with delayed position feedback , with particular attention focused on non-resonant double Hopf bifurcation. By using multiple time scales and center manifold reduction methods, we obtain the...

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Some vector fields on a riemannian manifold with semi-symmetric metric connection

In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.

متن کامل

Bifurcations, Stability and Synchronization in Delayed Oscillatory Networks

Current studies in neurophysiology award a key role to collective behaviors in both neural information and image processing. This fact suggests to exploit phase locking and frequency entrainment in oscillatory neural networks for computational purposes. In the practical implementation of artificial neural networks delays are always present due to the non null processing time and the finite sign...

متن کامل

On the dynamics of mean-field equations for stochastic neural fields with delays

The cortex is composed of large-scale cell assemblies sharing the same individual properties and receiving the same input, in charge of certain functions, and subject to noise. Such assemblies are characterized by specific space locations and space-dependent delayed interactions. The mean-field equations for such systems were rigorously derived in a recent paper for general models, under mild a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2013